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Cartesian grids used with the immersed boundary method (IBM) offer an attractive alternative for sim-
ulating fluid flows in complex geometries. We present a ghost fluid method for incompressible flows
solved with staggered grids. The primary feature is the satisfaction of local mass continuity for ghost
pressure cells, rather than extrapolating the pressures from within the flow domain. The method pre-
serves local continuity in each cell and also global continuity. As a result, no explicit mass sources or sinks
are needed. We have applied the method to study shear- and buoyancy-driven flows in a number of com-
plex cavities.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In contrast with curvilinear and unstructured grid methods for
numerical computations of flow and heat transfer in complex
geometries, Cartesian grid based procedures [1–5] possess the
advantages of easy grid generation, energy conserving discretiza-
tion properties, easy incorporation of higher-order differencing
schemes and grid adaptation. As a result, there has been a signifi-
cant amount of renewed interest in the CFD community in meth-
ods based on Cartesian grids. Several variants of Cartesian grid
methods have been proposed in the literature. The primitive Carte-
sian grid method in which cells and cell faces which are located
outside the flow domain are blocked is not accurate because of
the stair-step representation of the boundary. The inclusion or
exclusion of complete cells creates an approximate shape of the
boundary on which the discrete (staggered) velocities are held
fixed to the boundary values. Although, in the limit of grid refine-
ment, the cell faces can accurately represent the boundary seg-
ments, the cell faces must coincide with the grid lines and
therefore the precise location as well as the inclination of the
boundary is not accounted for locally.

One method that improves upon the primitive Cartesian grid
method is the Cartesian cut-cell technique [6–8]. In the Cartesian
cut-cell method, the intersections of the boundary segments with
the Cartesian grid are determined, and the near-boundary control
volumes are re-shaped to include the physical boundary. Thus,
the control volumes near the boundary become irregular polygons
with areas of cell faces adjusted based on the intersections of the
ll rights reserved.

: +1 217 244 6534.
boundary with the cell faces. The cut-cell method has been shown
by a number of researchers to improve the accuracy over the sim-
ple Cartesian grid method. However, the cut-cell method requires
the computation of a number of cell intersections and becomes
cumbersome in three dimensions if a complex boundary shape is
considered. The problem becomes more difficult if the boundaries
are moving.

Another technique to represent a complex boundary on a Carte-
sian grid is the immersed boundary method (IBM) pioneered by
Peskin [9,10]. A considerable amount of literature exists on vari-
ants of the immersed boundary method [11–16]. In Peskin’s origi-
nally proposed method, a combined Eulerian/Lagrangian approach
was used. The Eulerian grid is used to compute the flow field and
the boundary is prescribed by a set of Lagrangian points. First the
forces at the Lagrangian points are computed from a spring stiff-
ness model from knowledge of the displacements induced by the
fluid velocities. These forces are then distributed to the discrete
grid-based velocity locations through a discrete delta function.
The concept of forces at the Lagrangian points has also been used
to represent solid inelastic boundaries through boundary elements
of very large stiffness [15]. However, when the stiffness becomes
large, the time-step required to integrate the equations becomes
very small as small displacements can result in large forces at
the Lagrangian points. Mohd-Yusof [17] has developed a technique
in which the nodes inside the solid are directly forced to imply a
displacement consistent with the boundary displacement. In the
approach advocated by Mohd-Yusof [17] velocities are computed
at the grid locations nearest to the solid boundary as a linear inter-
polant of the velocity in the interior of the flow domain and the
boundary velocity. These velocities are then used in the discrete
momentum equations at the points in the solid to compute implied
forces to be added.
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Nomenclature

A;B;C;D interpolation points
H convection and diffusion terms
L characteristic length
T absolute temperature
V characteristic velocity
a generic coefficient
f bilinear interpolation coefficient
g acceleration due to gravity
h height
n normal direction
p non-dimensional static pressure
t non-dimensional time
u non-dimensional x-velocity
uref arbitrary reference velocity
v non-dimensional y-velocity
x; y non-dimensional Cartesian coordinates
Gr Grashoff number ¼ gbDTL3=m2

Pr Prandtl number ¼ m=a
Ra Rayleigh number = Gr Pr
Re Reynolds number ¼ VL=m

Greek symbols
a thermal diffusivity
b thermal expansion coefficient
Dt time-step
Dx grid spacing in x-direction
Dy grid spacing in y-direction
k non-dimensional half-wavelength
m kinematic viscosity
U generic scalar
h non-dimensional temperature

Subscripts
B immersed boundary point
G ghost point
I interior point
M image point

Superscriptsb intermediate value
n time-level

A.F. Shinn et al. / International Journal of Heat and Mass Transfer 52 (2009) 4082–4089 4083
A third approach, which appears equivalent to the direct forcing
approach, is the ghost fluid technique [18–20]. In the ghost fluid
model, the velocities for cells adjacent to the solid region are di-
rectly fixed by interpolating them from inside the flow domain. A
typical ghost fluid method consists of first identifying the ghost
points through some form of a search and tag technique. Next,
for every ghost point, a normal to the nearest segment is con-
structed and the location of the ghost point is mirror-reflected into
the flow domain. The value of the variable at this reflected location
is then interpolated from the surrounding grid based values. The
value at the mirror point is subsequently reflected back to the
ghost location outside the flow domain. If an explicit integration
procedure is used for computing the flow field, the velocity at
the ghost point is computed after the completion of the fluid flow
computation and is used as a boundary condition for the next time-
step. For implicit formulations, one can either perform iterations at
a given time-step or implicitly account for the ghost velocities in
the momentum equations as boundary conditions. An important
issue with ghost cell based staggered grid methods is the conserva-
tion of mass in cells which are outside the flow domain. For such
cells, some of the cell face velocities may be tagged as ghost veloc-
ities and some may be inside the flow domain depending on the
boundary orientation and intersections with grid lines. In several
previous implementations of the IB method [19–21], the pressure
at the ghost cells is extrapolated from inside of the domain by
imposing a zero normal derivative at the boundary surface. How-
ever, a problem with this method is that if this pressure is subse-
quently used in the computation of the ghost cell face velocities,
the mass continuity for these cells may not necessarily be satisfied.
Mass imbalances can occur and can lead to numerical divergence.
Kim et al. [22] proposed adding a source/sink term to the continu-
ity equation to compensate for this mass defect. However, this also
can cause errors in the velocity field.

In the present paper, we have used a different practice to treat
mass continuity at the ghost cells. This procedure is similar to a re-
cent method [23] advocated in the context of a semi-implicit pro-
cedure in which the mass continuity at the ghost cells is solved
along with the interior equations for pressure. Further, for these
ghost cells, the boundary velocity is directly substituted in the con-
tinuity equation and the ghost velocities are not used in evaluating
the mass residual. This practice along with the ghost cell immersed
boundary method is combined with the fractional-step procedure
and second-order central differencing scheme of the derivatives
in the Navier–Stokes equations. After validating the method in
some simple geometries, we applied it to study shear- and buoy-
ancy-driven flows in a variety of complex cavities. The following
sections describe the details of the numerical method, and results
obtained for several complex enclosures. For brevity, only a limited
number of cases are presented in this paper.

2. Problems considered and governing equations

Shear-driven flows in enclosures are rich in complexity, consist-
ing of a hierarchical organization of corner eddies frequently re-
ferred to as Moffatt eddies [24] with a nearly precise ratio of
vortex strengths and distances between vortex centers. The
shear-driven flow in a square cavity [25,26] has been extensively
studied as a canonical problem in computational fluid mechanics.
In a square cavity, the flow consists of one primary and two corner
eddies which in turn generate a hierarchy of counter and co-rotat-
ing eddies. A limited number of numerical studies have also been
concerned with triangular, trapezoidal, rhombic, and semicircular
cavities [27–30]. Besides being of academic interest, shear-driven
flows in enclosures (subsonic as well as supersonic) are of impor-
tance in aerodynamics, drag reduction, and aero-acoustics. Like-
wise, natural convection flows in enclosures with differential
heating of two side-walls and adiabatic conditions at the other
boundaries have been extensively studied. As a model problem,
the double-glazing problem has been frequently used for
validation and verification of CFD techniques and codes. In the
double-glazing problem, the flow varies from a single regular
primary vortex at low Rayleigh numbers to a time-dependent
complex vortical flow at large Rayleigh numbers. While the square
enclosure has enjoyed the most attention [31–35], natural convec-
tion in other complex-shaped enclosures has attracted relatively
less attention. A few studies have considered rhombic and triangu-
lar enclosures as well as trapezoidal enclosures [36–39]. The gen-
eral features of such flows resemble those in a square enclosure,
although the shapes of the vortices are distorted by the shapes of
the sloping walls. The equations representing these two classes
of flows are the two-dimensional Navier–Stokes equations govern-
ing mass, momentum, and energy transport. In the current study,
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these equations are solved with constant properties in conjunction
with the Boussinesq approximation. The ranges of Reynolds, Pra-
ndtl, and Grashoff numbers have been limited to ensure the flows
are steady in time. The non-dimensional time-dependent equa-
tions, incorporating the Boussinesq approximation can be written
as:
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In the above equations, the velocities are non-dimensionalized by
an arbitrary reference velocity uref . The Grashoff number Gr is de-
fined as

Gr ¼ gbDTL3

m2 ð4Þ

where DT is the characteristic temperature difference ðThot � TcoldÞ
between the hot and cold side walls, m is the molecular kinematic
viscosity of the fluid, and b is the thermal expansion coefficient.
The pressure is non-dimensionalized by the reference dynamic
head, and the Reynolds number is defined by the reference velocity
and cavity depth.

The above equations are supplemented with boundary condi-
tions for velocities and temperatures. Except for the Boussinesq
approximation, the properties are held constant in both the flows.
The non-dimensional numbers Re and Ra are varied in a range
where the flow is postulated to be steady (this was confirmed by
our computations). However, the time-dependent equations were
solved until a time asymptotic state was reached.

3. Numerical method

As mentioned above, we have represented the complex bound-
aries on a Cartesian domain and discretized the equations by a
Cartesian grid. To improve accuracy at the boundaries, the im-
mersed boundary method (IBM) using the ghost cell approach
has been implemented. As previously mentioned, there are essen-
tially two approaches in implementing the immersed boundary
method. In the first approach, discrete forces are imposed in the
momentum equations at selected near-boundary locations such
that the appropriate velocity components reflect the boundary val-
ues at the correct boundary locations. The boundary forces are dis-
tributed to nearby locations using a discrete delta function. The
discrete force method is well-suited to techniques such as finite-
differences, spectral, and finite-element methods. For the finite-
volume method, the force method can also be used by modifying
directly the ghost cell momentum equations with a force term
and iterated, if necessary, to make the ghost values equal to the
pre-determined values. Alternately, the ghost cell values can be di-
rectly imposed at every time-step based on the variables computed
inside the domain.

The present numerical method employs the ghost cell approach.
In the ghost cell approach, the values of the variables outside the
flow domain or inside the solid obstacle are fixed every time-step
using the internal values and the imposed boundary values on the
solid boundary. This is done by appropriately mirroring the interior
values to the outside of the flow domain (or to the inside of a con-
fined obstacle). The mirroring satisfies the condition

UG þUI

2
¼ UB ð5Þ
where UG is the value at the ghost node (i.e. outside of the flow do-
main), UI is the interior value, and UB is the value on the boundary.
U can be any one of the three velocity components, temperature, or
any scalar. Note that the value of pressure on the boundary is not
known. Instead, a more appropriate condition is a Neumann bound-
ary condition @p=@n ¼ 0.

In previous works [15,16,20,21], the pressure at the ghost nodes
was evaluated using the zero normal derivative condition and was
used in the computation of the velocities corresponding to such cells.
However, this practice, while appropriate, leads to mass sources in
the cells with fixed ghost pressures and eventually to oscillatory flow
fields or even numerical divergence. In the present work, a different
practice is used to evaluate the pressures in the ghost cells.

The first step in the current numerical procedure is the identifi-
cation of the boundary. We have implemented the current proce-
dure in both two and three dimensions, but we shall describe
here in detail only the 2D case. In two dimensions, the geometry
can be described by a number of successively connected line seg-
ments identified by the vertex numbers and the coordinates of
the vertices. From the coordinates, the normals pointing into the
solid (or out of the flow domain) are computed. In addition, the
boundary values of velocities, temperatures, and type of tempera-
ture boundary (Dirichlet or Neumann) are prescribed.

The second step consists of a number of preprocessing calcula-
tions to aid in the determination of the value at the mirror image
point. This consists of the following sub-steps:

a. Tagging cells: Once the Cartesian grid ranging between
ðxmin; yminÞ and ðxmax; ymaxÞ is decided, the finite volume cells
are tagged based on their physical boundary. Since we are
using a staggered grid, separate tagging is needed for the
velocity locations and the cell centers. Consider first the cell
centers. For each cell center, a boundary segment which is
closest (smallest perpendicular distance) is first determined.
The segment number and the distance are stored and the cell
is identified to be an inside or outside cell based on the sign
of the distance (positive if the cell is outside the flow
domain). Cells outside are tagged as zero and inside are
tagged as 1.

b. Identifying ghost cells: Cells closest to the boundary are called
the ghost cells. These are cells where a ghost value is com-
puted and used for calculations in the interior. A ghost cell
is one for which there is at least one neighbor which is inside
the flow domain (to be computed in the usual way). This
ghost cell is tagged with a value of 2 and its value is obtained
by mirroring the interior value.

c. Identifying the interpolation neighbors: For each ghost cell, a
mirror image point is determined by reflecting the ghost
point across the boundary into the interior flow domain.
The coordinates of the image points are
ðxM ; yMÞ ¼ ðxB � ½xG � xB�; yB � ½yG � yB�Þ ð6Þ

where ðxB; yBÞ are the coordinates of the intersection of the
normal from ðxG; yGÞ with the line segment. Since this point
ðxM; yMÞ can be in an arbitrary cell, first the cell containing
this point is determined. This is done by hierarchical search-
ing from coarse to fine grid levels. Once the cell containing
the mirror point is determined, the four neighbor cells from
which the mirrored value is to be determined are fixed. Here
there are two methods. In several previous works, the value
on the boundary is directly used in the interpolation from a
bilinear or quadratic function as

U ¼ a0 þ a1xþ a2yþ a3xy ð7Þ

The four coefficients are evaluated from the values at
A; B;C;D as shown in Fig. 1. This is because two points are



Fig. 1. Immersed boundary (curved line) overlaying grid cells. The dashed line is a
perpendicular dropped from the ghost point G to the mirror point M, G1 is another
ghost point, and A;B; C;D are interpolation points. Open circles are cell centers.
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on the boundary. An alternative procedure would be to use
points A;C;G;G1. Use of UG to subsequently determine UG

from UM has been observed to lead to numerical divergence
if G is close to the boundary. Hence, let

UM ¼ f1UA þ f2UC þ f3UG þ f4UG1 ð8Þ

where f1; f2; f3; f4 are the bilinear interpolation coefficients.
Further,

UG ¼ 2UB �UM ð9Þ

Substituting the value of UG in the previous equation,

UM ¼ f1UA þ f2UC þ f3ð2UB �UMÞ þ f4UG1 ð10Þ

or

UMð1þ f3Þ ¼ f1UA þ f2UC þ 2f 3UB þ f4UG1 ð11Þ

This practice is used in the current method.
d. Computing ghost values: The above three steps are pre-pro-

cessing steps and are done once, if the geometry is fixed
and not moving. For a given set of ghost points the next step
is to determine their values from the interior of the flow
domain. This step implements Eq. (9) and Eq. (11) through
which four neighboring values of an interior mirror image
point are weighted to get UG.

Note that the locations of velocities are different than the cell
centers and hence different cell tags and interpolation
Fig. 2. Triangular cavity with the sloped wall m
weights are to be computed. At each time-step, the ghost
x- and y-velocities are determined from the interior values.

e. Continuity satisfaction at ghost cells: In staggered mesh algo-
rithms, the mass continuity is satisfied directly by the veloc-
ities on the cell faces unlike collocated schemes in which the
cell face velocities are interpolated from cell centers. For
ghost pressures, two practices are possible. In the first prac-
tice, as used in [20,21], the ghost pressures are extrapolated
from inside by the mirror reflection procedure using a Neu-
mann condition. However, this practice leads to mass fluxes
across the solid boundaries and mass errors in the ghost
cells. Even if these errors are compensated for by mass
sources/sinks, oscillations are observed in the velocity field.
Another approach is to directly satisfy the continuity equa-
tion for the ghost cells also and determine the pressure the
usual way through the Poisson equation. However, the mass
errors should not be evaluated using the ghost velocities
because they are not solutions of the momentum equations.
Instead, the boundary velocities must be directly substituted
and the ghost velocities (outside the boundary) must be
used only for the momentum equations. This practice pre-
serves global continuity and avoids mass source/sinks in
ghost cells. Recently, a similar practice was successfully used
in an implicit formulation by Mark and Van Wachem [23].

f. Solution of interior cells: The cells that are tagged as zero are
those which are outside the flow domain and also are not
ghost cells. Hence, it is possible to delete them and ‘‘repack”
only the cells with tags of one and two. Our current code has
indirect addressing of the cells and their neighbors. How-
ever, we currently keep in memory the cells tagged zero,
but skip their calculation.

For cells that are in the interior (tag = 1) we use a time-march-
ing fractional-step procedure to evaluate velocities and pressure.
The steps in this procedure are
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Dt

¼ � @p
@x

� �nþ1

ð14Þ
oving for (a) Re = 100 and (b) Re = 1000.



Fig. 3. Triangular cavity with the top wall moving for (a) Re = 100 and (b) Re = 1000.
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Second-order central differencing is used to discretize the spatial
derivatives. The pressure Poisson equation is solved by an algebraic
multigrid (AMG) procedure.

4. Results

We now present results of shear- and buoyancy-driven flows in
selected complex cavities. The shapes of the geometries have been
selected to simulate an interesting variety of enclosure shapes. The
computational grids used in these simulations had 128 � 128 finite
volume cells on a unit square domain, giving Dx ¼ Dy ¼ 1=128.
This mesh size was selected as a compromise between accuracy
and computational effort. Although finer grids could have been
considered, the accuracies achieved with the present grid for
bench-mark problems (driven square cavity at Re = 1000 and nat-
ural convection in a square cavity at Ra = 106) were within 1–2% in
Fig. 4. Sinusoidal cavities with height to half-wavelength ratio of (a) h=k
key quantities (maximum velocities and their locations) and the
qualitative patterns did not change with further grid refinement.
The discrete equations were solved until a steady flow field was
reached. The following sections describe the various cases studied.

4.1. Shear-driven flows

A triangular cavity is considered first, where the two legs of the
triangle (top and left walls) are of length unity, and the hypotenuse
(sloped wall) is at an angle of 45�. Two cases are considered for the
triangular cavity: the sloped wall is moved with a non-dimensional
velocity of unity (Fig. 2) and the horizontal top wall is moved to the
right at a non-dimensional velocity of unity (Fig. 3). Reynolds num-
bers ðRe ¼ Vh=mÞ of 100 and 1000 were tested for both cases. The
two cases produce considerably different flow patterns. When
the sloped wall is moved tangentially at Re = 100, a single vortex
is formed in the entire cavity (Fig. 2a). Corner eddies at the 90� cor-
ner are not visible at this current resolution. This eddy grows in
size and significantly distorts in shape as the Reynolds number is
increased to 1000 (Fig. 2b). The primary vortex is elongated in
the aft section. It was found that there is no appreciable qualitative
¼ 1:0 and (b) h=k ¼ 4:0 with the bottom wall moving for Re = 1000.



Fig. 5. Natural convection in a square cavity heated from the right side ðh ¼ 1Þ,
cooled from the left side ðh ¼ 0Þ, and held as adiabatic along the top and bottom
sides ðRa ¼ 106Þ.
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difference between the patterns at Re = 1000 and 1500 for the
moving sloped wall, and thus results for Re = 1500 are not shown.
Beyond Re = 1500, the flow may likely become unsteady, and
hence was not pursued. For the second case of a moving top wall,
a strong primary eddy is produced at Re = 100 (Fig. 3a), followed by
a series of counter and co-rotating eddies at progressively dimin-
ishing strengths. Further, as the Reynolds number is increased to
1000 (Fig. 3b), the primary eddy becomes elongated with a larger
head section. However, the qualitative nature of the flow remains
the same from Re = 1000 onwards.

The final example that illustrates the beautiful formation of
Moffatt eddies is a sinusoidal cavity. The two parameters charac-
terizing the flow are the height to half-wavelength ratio ðh=kÞ
and the Reynolds number ðRe ¼ Vh=mÞ. Fig. 4 shows flow patterns
for two height to half-wavelength ratios at the same Reynolds
number, Re = 1000. The flow patterns for the low aspect ratio show
one primary eddy and a secondary eddy (Fig. 4a). However, if the
aspect ratio is increased to h=k ¼ 4:0, there are six Moffatt eddies,
although of very small strength and size (Fig. 4b). It is interesting
to see that the Cartesian grid/IBM is able to capture these faithfully.
Fig. 6. Natural convection in a triangular cavity with the sloped wall heated ðh ¼ 1Þ, left
These results display the formation of the Moffatt eddies in tall
enclosures (triangular and sinusoidal) where the nonlinear effects
become small. In the present study, we have limited our observa-
tions to the qualitative aspects of the flow pattern formation.

4.2. Buoyancy-driven flows

Buoyancy-driven flows are abundantly found in nature and in
industry. Many configurations are complex in shape, leading to
interesting natural convection flow patterns. In this section, we
present results of computations of natural convection flow induced
in square, triangular, and circular enclosures. The natural convec-
tion is generated by heating one of the side walls and cooling the
other. The top and bottom walls for the square configuration and
the top wall for the triangular configuration are prescribed to be
adiabatic. In addition to the momentum equations, we now solve
the energy equation, and add the buoyancy source terms to the
momentum equations.

Prior to computing flows in complex enclosures, we have first
validated our code for the double-glazing problem [31,32]. Two
Rayleigh numbers (105 and 106) were computed and compared
with benchmark data of [35]. The grid used in these computations
had 128 � 128 control volumes versus 640� 640 in the reference
study. Fig. 5 shows streamlines overlaid on contours of non-dimen-
sional temperature for a Rayleigh number of 106. The errors were
observed to be small. Also, the accuracy of the immersed boundary
method was assessed by tilting the cavity by 45� and orienting the
gravity vector parallel to the side walls. The results of this case (not
shown here) were the same as the square cavity case after properly
resolving the velocity vectors. The predicted velocities and temper-
atures were in good agreement with benchmark data.

Proceeding now to complex enclosures, we present a triangular
cavity where the sloped wall is heated ðh ¼ 1Þ and the left wall is
cooled ðh ¼ 0Þ. The top wall is adiabatic. Fig. 6 shows the stream-
lines, overlaid on the temperature contours for Rayleigh numbers
of 105 and 106. At the low Rayleigh number, the streamlines are
aligned with the walls but as the Rayleigh number is increased,
the streamlines become distorted.

A circular enclosure with half of the circumference maintained
hot ðh ¼ 1Þ and the other half kept cold ðh ¼ 0Þ is treated next
(Fig. 7). The differential heating causes a circulatory pattern with
flow from the hot wall to the cold wall. In the outer region, the flow
is well-aligned with the boundary, but inside vortices are formed.
side cooled ðh ¼ 0Þ, and top side held as adiabatic for (a) Ra ¼ 105 and (b) Ra ¼ 106.



Fig. 7. Natural convection in a circular enclosure with right half heated ðh ¼ 1Þ and left half cooled ðh ¼ 0Þ at (a) Ra ¼ 105 and (b) Ra ¼ 106.
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These vortices deform in shape as the Rayleigh number is in-
creased. At Ra ¼ 106, the two vortices previously seen at 105 in-
creased in size and a new central vortex has formed. In the
present computations, the boundary is represented by 72 linear
segments spanning 5 degrees each. The outer boundary appears
to be non-smooth because of the value blanking in displaying the
contours.

In summary, natural convection in enclosures can generate very
fascinating and complex flow patterns. Depending on the shape of
the bounding surface, multiple vortices are formed at different
Rayleigh numbers. There are almost an inexhaustible number of
boundary shapes and parameters which can be explored for scien-
tific interest. The present computational tool provides an easy pro-
cess to represent such problems.

5. Summary and future work

The proposed method is well-suited to the study of several
engineering flows in complex geometries. We have already imple-
mented this method in three-dimensions and hope to conduct LES/
DNS of turbulent flows in complex geometries. We hope to extend
this method with more features such as combustion, sprays, and
adaptive mesh refinement. Our eventual goal is to conduct LES of
gas turbine combustor flows without extensive mesh generation.
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